Maximal Cohen–Macaulay modules over certain Segre products
نویسندگان
چکیده
منابع مشابه
On the arithmetic rank of certain Segre products
We compute the arithmetic ranks of the defining ideals of homogeneous coordinate rings of certain Segre products arising from elliptic curves. The cohomological dimension of these ideals varies with the characteristic of the field, though the arithmetic rank does not. We also study the related set-theoretic Cohen-Macaulay property for these ideals. In [12] Lyubeznik writes: Part of what makes t...
متن کاملSchur Modules and Segre Varieties
This paper is an elementary introduction to the methods of Landsberg and Manivel, [3] for finding the ideals of secant varieties to Segre varieties. We cover only the most basic topics from [3], but hope that since this is a topic which is rarely made explicit, these notes will be of some use. We assume the reader is familiar with the basic operations of multilinear algebra: tensor, symmetric, ...
متن کاملMaximal Cohen-macaulay Modules over Hypersurface Rings
This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.
متن کاملFredholm Modules over Certain Group C*-algebras
Motivated by the search for new examples of “noncommutative manifolds”, we study the noncommutative geometry of the group C*-algebras of various discrete groups. The examples we consider are the infinite dihedral group Z×σZ2 and the semidirect product group Z×σZ. We present a unified treatment of the K-homology and cyclic cohomology of these algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2018
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2018.1444173