Maximal Cohen–Macaulay modules over certain Segre products

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the arithmetic rank of certain Segre products

We compute the arithmetic ranks of the defining ideals of homogeneous coordinate rings of certain Segre products arising from elliptic curves. The cohomological dimension of these ideals varies with the characteristic of the field, though the arithmetic rank does not. We also study the related set-theoretic Cohen-Macaulay property for these ideals. In [12] Lyubeznik writes: Part of what makes t...

متن کامل

Schur Modules and Segre Varieties

This paper is an elementary introduction to the methods of Landsberg and Manivel, [3] for finding the ideals of secant varieties to Segre varieties. We cover only the most basic topics from [3], but hope that since this is a topic which is rarely made explicit, these notes will be of some use. We assume the reader is familiar with the basic operations of multilinear algebra: tensor, symmetric, ...

متن کامل

Maximal Cohen-macaulay Modules over Hypersurface Rings

This paper is a brief survey on various methods to classify maximal Cohen-Macaulay modules over hypersurface rings. The survey focuses on the contributions in this topic of Dorin Popescu together with his collaborators.

متن کامل

Fredholm Modules over Certain Group C*-algebras

Motivated by the search for new examples of “noncommutative manifolds”, we study the noncommutative geometry of the group C*-algebras of various discrete groups. The examples we consider are the infinite dihedral group Z×σZ2 and the semidirect product group Z×σZ. We present a unified treatment of the K-homology and cyclic cohomology of these algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2018

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2018.1444173